Three-dimensional optical data storage in a fluorescent dye-doped photopolymer.

نویسندگان

  • M M Wang
  • S C Esener
چکیده

We propose a new, to our knowledge, monolithic multilayer optical storage medium in which data may be stored through the diffusional redistribution of fluorescent molecules within a polymer host. The active portion of the medium consists of a photopolymer doped with a fluorescent dye that is polymerized at the focal point of a high-numerical-aperture lens. We believe that as fluorescent molecules bond to the polymer matrix they become more highly concentrated in the polymerized regions, resulting in the modulated data pattern. Since data readout is based on detection of fluorescence rather than index modulation as in other photopolymer-based memories, the problems of media shrinkage and optical scatter are of less concern. An intensity threshold observed in the recording response of this material due to the presence of inhibitor molecules in the photopolymer allows for the three-dimensional confinement of recorded bits and therefore multilayer recording. The nonlinear recording characteristics of this material were investigated through a simple model of photopolymerization and diffusion and verified experimentally. Both single-layer and multilayer recordings were demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective fluorescence functionalization of dye-doped polymerized structures fabricated by direct laser writing (DLW) lithography.

The continuous development of the vast arsenal of fabrication techniques is a pivotal factor in the breakthrough of nanotechnology. Although the broad interest is generally focused on the reduction of the dimensions of the fabricated structures, localized functionalization of the nanomaterials emerges as a key factor closely linked to their potential applications. In particular, fabrication of ...

متن کامل

Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage.

We present the design and fabrication of a phenanthrenequinone-doped poly(methyl methacrylate) photopolymer material. Large blocks of samples were made, and the material showed negligible shrinkage after optical exposures. We recorded and reconstructed 250 holograms at a single spot, using a 1-cm(3) block.

متن کامل

Three-Dimensional Dye Distribution in Photo-Oriented Liquid-Crystal Alignment Layers

– The three-dimensional optical anisotropy of photo-buffed dye-doped polymer films and the resulting orientation imparted to a liquid crystal in contact are probed using total internal reflection. Although the linearly polarized writing light generates a uniaxial distribution of dye molecules, the polymer films are biaxial, a result of symmetry breaking by the film surface. Photo-induced anisot...

متن کامل

Peristrophic multiplexed holograms recorded in a low toxicity photopolymer

Multiplexed diffraction gratings were recorded in 300 μm thick layers of biophotopol photopolymer by using two peristrophic multiplexing schemes separately and in combination. In addition, it was shown that riboflavin may be used as polymer initiator in acrylamide photopolymer films and the holographic properties of these films such as diffraction efficiency and dynamic range were compared with...

متن کامل

Three-dimensional optical disk data storage via the localized alteration of a format hologram.

Three-dimensional optical data storage is demonstrated in an initially homogenous volume by first recording a reflection grating in a holographic photopolymer. This causes the entire volume to be weakly reflecting to a confocal read/write head. Superposition of two or three such gratings with slightly different k-vectors creates a track and layer structure that specialized servo detection optic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 39 11  شماره 

صفحات  -

تاریخ انتشار 2000